Интеграл 3/2021

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА И МИКРОФЛОРЫ СЫРЬЯ НА ПРОЦЕСС БРОЖЕНИЯ ЯБОЧНОГО СОКА

INFLUENCE OF CHEMICAL COMPOSITION AND MICROFLORA OF RAW MATERIALS ON THE PROCESS OF APPLE JUICE FERMENTATION

УДК 663.32

DOI 10.24412/2658-3569-2021-10056

Бурак Леонид Чеславович, канд. техн. наук,  https://orcid.org/0000-0002-6613-439X, директор Общество с ограниченной ответственностью «БЕЛРОСАКВА», г. Минск

Яблонская Вероника Владимировна, главный технолог, Совместное общество с ограниченной ответственностью «Ароматик, г. Дзержинск Минская область

 Burak L.Ch             leonidburak@gmail.com

Yablonskaya V.V.  v_taiy@mail.ru

Аннотация

Ферментированные яблочные напитки производятся во всем мире с различным физико-химическим составом и органолептическими показателями.    Несмотря на имеющиеся различия производители сидра сталкиваются с аналогичными проблемами и рисками. Основное влияние на процесс брожения сидра оказывает физико-химический состав сырья. Следовательно, для производства сидра хорошего качества требуется сырье   определенного химического состава. Кроме того дрожжи и  продукты  их метаболизма являются важными факторами в процессе брожения. Производители сидра и других алкогольных напитков в постоянном поиске новых штаммов дрожжей  для производства «аутентичных» и разнообразных напитков, которые отличаются друг от друга и в итоге должны привллечь  большее количество потребителей. Исследовательских материалов о производстве сидра намного  меньше по сравнению со статьями о  производстве вина, особенно о влиянии химического состава яблок и его микробного разнообразия на процесс ферментаци. Несмотря на то, что переработка ферментированных напитков мало отличается  с точки зрения микробиологии и производства, изучение конкретных свойств сырья и производственных проблем при производстве сидра является полезным и значимым для производителей сидра. В этом обзоре обобщены  научные публикации о химическом составе яблок, влиянии состава сусла на  процесс брожения и рост дрожжей. Кроме того, рассматривается микробное разнообразие сидра, микробиологическая активность  и ее влияние на ферментацию.  Сведения о химическом составе различных сортов, в частности содержании сахаров, органических кислот, соединений азота и полифенолов, имеет важное значение, поскольку они напрямую влияют на процесс брожения     и органолептические показатели производимых сидров.

Annotation

Fermented apple drinks are produced all over the world with different physico-chemical composition and organoleptic characteristics. Despite the differences, cider producers face similar challenges and risks. The main influence on the cider fermentation process is exerted by the physicochemical composition of the raw materials. Therefore, the production of good quality cider requires raw materials of a certain chemical composition. In addition, yeast and its metabolic products are important factors in the fermentation process. Producers of cider and other alcoholic beverages are constantly looking for new yeast strains to produce “authentic” and diverse beverages that are different from each other and should ultimately attract more consumers. There is much less research material on the production of cider compared to articles on wine production, especially on the effect of apple chemistry and its microbial diversity on the fermentation process. Although the processing of fermented beverages differs little in terms of microbiology and production, the study of the specific properties of raw materials and production problems in the production of cider is useful and significant for cider producers. This review summarizes scientific publications on the chemical composition of apples, the effect of must composition on the fermentation process and yeast growth. In addition, the microbial diversity of cider, microbiological activity and its effect on fermentation are considered. Information about the chemical composition of various varieties, in particular the content of sugars, organic acids, nitrogen compounds and polyphenols, is important, since they directly affect the fermentation process and the organoleptic characteristics of the produced ciders.

Ключевые слова: яблоки, сидр, ферментация, химический состав, сахара, дрожжи, микроорганизмы, полифенолы

Key words: apples, cider, fermentation, chemical composition, sugars, yeast, microorganisms, polyphenols

Литература

  1. Ferree, D.C.; Warrington, I.J. Apples Botany, Production and Uses //CABI Publishing: Oxfordshire, UK, 2015; Volume 1, ISBN 9788578110796.
  2. United States Department of Agriculture //Fresh Apples Fresh Domestic Consumption by Country in MT; U.S. Department of Agriculture: Washington, DC, USA, 2019.
  3. Centro Nacional De Alimentación. Tablas Peruanas de Composición de Alimentos; Centro Nacional De Alimentación: Madrid, Spain, 2009; ISBN 9789972857737.
  4. Hansen, P. The Effect of cropping on the growth and uptake of nutrients by apple trees at different levels of nitrogen, potassium, magnesium and phosphorus. Acta Agric. Scand.1973, 23, 87–92.
  5. Zhang, L.-X.; Zhang, L.-S.; Li, B.-Z.; HAN, M.-Y. Mineral nutrition elements and their roles in growth and development of apple trees in arid areas. // Northwest For. Univ.1997, 22, 111–115.
  6. Perring, M.A.; Holland, D.A. The effect of orchard factors on the chemical composition of apples. V. Year-to-year variations in the effects of NPK fertilizers and sward treatment on fruit composition // Hortic. Sci. 1985, 60, 37–46.  
  7. Fallahi, E.; Conway, W.S.; Hickey, K.D.; Sams, C.E. The role of calcium and nitrogen in postharvest quality and disease resistance of apples. HortScience1997, 32, 831–835.  , W. Food Chemistry Berlin Allemagne. Springer: Berlin, Germany, 2009; ISBN 9783540699330.  ]
  8. Renard, C.M.G.C.; Baron, A.; Guyot, S.; Drilleau, J.F. Interactions between apple cell walls and native apple polyphenols: Quantification and some consequences.  J. Biol. Macromol.2001, 29, 115–125.
  9. Valois, S.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization of fermented cider apple cultivars grown in upstate New York.  Am. Pomol. Soc.2006, 60, 113–128.  
  10. Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants2018, 7, 20.  
  11. Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC).  Agric. Food Chem.2003, 51, 6347–6353.   
  12. Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J.-F. Reversed-Phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a french cider apple variety (Malus domestica Kermerrien). J. Agric. Food Chem. 1998, 46, 1698–1705.  
  13. Jawad, M.; Schoop, R.; Suter, A.; Klein, P.; Eccles, R. Perfil de eficacia y seguridad de Echinacea purpurea en la prevención de episodios de resfriado común: Estudio clínico aleatorizado, doble ciego y controlado con placebo.  Fitoter.2013, 13, 125–135.  
  14. Podsedek, A.; Wilska-Jeszka, J.; Anders, B.; Markowski, J. Compositional characterisation of some apple varieties.  Food Res. Technol.2000, 210, 268–272.  
  15. Cabranes, C.; Moreno, J.; Mangas, J.J. Dynamics of yeast populations during cider fermentation in the Asturian Region of Spain.  Environ. Microbiol.1990, 56, 3881–3884.  
  16. Campo, G.; Santos, J.I.; Berregi, I.; Velasco, S.; Ibarburu, I.; Dueñas, M.T.; Irastorza, A.; Brew, J.I. Ciders produced by two types of presses and fermented in stainless steel and wooden vats.  Inst. Brew.2003, 109, 342–348.  
  17. Valles, B.S.; Pando Bedriñana, R.; Tascón, N.F.; Simón, A.Q.; Madrera, R.R. Yeast species associated with the spontaneous fermentation of cider. Food Microbiol.2007, 24, 25–31
  18.  Ruiz-Cruz, S.; Alvarez-Parrilla, E.; de la Rosa, L.; Martinez-Gonzalez, A.I.; Ornelas-Paz, J.D.J.; Mendoza-Wilson, A.M.; Gonzalez-Aguilar, G.A.; Obregon, C. Effect of different sanitizers on microbial, sensory and nutritional quality of fresh-cut jalapeno peppers.  J. Agric. Biol. Sci. 2010, 5, 331–341.  
  19. Graça, A.; Santo, D.; Esteves, E.; Nunes, C.; Abadias, M. Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiol.2015, 51, 179–185.  
  20. Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Viñas, I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments.  J. Food Microbiol.2008, 123, 121–129.  
  21. Beech, F. Cider making and cider research: A review.  Inst. Brew.1972, 78, 477–491.  
  22. Coton, E.; Coton, M.; Levert, D.; Casaregola, S.; Sohier, D. Yeast ecology in French cider and black olive natural fermentations.  J. Food Microbiol.2006, 108, 130–135.  
  23. Morrissey, W.F.; Davenport, B.; Querol, A.; Dobson, A.D.W. The role of indigenous yeasts in traditional Irish cider fermentations.  Appl. Microbiol.2004, 97, 647–655.  
  24. Romano, P.; Suzzi, G.; Comi, G.; Zironi, R.; Maifreni, M. Glycerol and other fermentation products of apiculate wine yeasts.  Appl. Microbiol.1997, 82, 615–618.  
  25. Terpou, A.; Dimopoulou, M.; Belka, A.; Kallithraka, S.; Nychas, G.E.; Papanikolaou, S. Effect of myclobutanil pesticide on the physiological behavior of two newly isolated Saccharomyces cerevisiaestrains during very-high-gravity alcoholic fermentation. Microorganisms 2019, 7, 666.  
  26. Lorenzini, M.; Zapparoli, G.; Azzolini, M.; Carvalho, C.; Sampaio, J.P. Sporobolomyces agrorum nov. and Sporobolomyces sucorumsp. nov., two novel basidiomycetous yeast species isolated from grape and apple must in Italy. Int. J. Syst. Evol. Microbiol. 2019, 69, 3385–3391.  
  27. Suárez Valles, B.; Pando Bedriñana, R.; González García, A.; Querol Simón, A. A molecular genetic study of natural strains of Saccharomycesisolated from Asturian cider fermentations.  Appl. Microbiol. 2007, 103, 778–786.  
  28. Al Daccache, M.; Koubaa, M.; Maroun, R.G.; Salameh, D.; Louka, N.; Vorobiev, E. Suitability of the Lebanese “Ace Spur” apple variety for cider production using Hanseniaspora yeast. Fermentation2020, 6, 32.  
  29. Laplace, J.M.; Jacquet, A.; Travers, I.; Simon, J.P.; Auffray, Y. Incidence of land and physicochemical composition of apples on the qualitative and quantitative development of microbial flora during cider fermentations.  Inst. Brew. 2001, 107, 227–234.  
  30. Garai, G.; Duenas, M.T.; Irastorza, A.; Moreno-Arribas, M.V. Biogenic amine production by lactic acid bacteria isolated from cider.  Appl. Microbiol. 2007, 45, 473–478.   
  31. Dellaglio, F.; Torriani, S.; Felis, G.E. Reclassification of Lactobacillus cellobiosusRogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck 1901.  J. Syst. Evol. Microbiol. 2004, 54, 809–812.
  32. Marieta, C.; Ibarburu, I.; Duenas, M.; Irastorza, A. Supramolecular structure and conformation of a (1—>3)(1—>2)-beta-D-glucan from Lactobacillus suebicusCUPV221 as observed by tapping mode atomic force microscopy.  Agric. Food Chem. 2009, 57, 6183–6188.  
  33. Salih, A.G.; Drilleau, J.F.; Cavin, F.F.; Sánchez, A.; Rodríguez, R.; Coton, M.; Coton, E.; Herrero, M.; García, L.A.; Díaz, M. Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Res. Int.2010, 43, 2101–2107.  
  34. Al Daccache, M.; Koubaa, M.; Salameh, D.; Maroun, R.G.; Louka, N.; Vorobiev, E. Ultrasound-assisted fermentation for cider production from Lebanese apples.  Sonochem.2020, 63, 104952.  
  35. Al Daccache, M.; Koubaa, M.; Salameh, D.; Vorobiev, E.; Maroun, R.G.; Louka, N. Control of the sugar/ethanol conversion rate during moderate pulsed electric field-assisted fermentation of a Hanseniaspora strain to produce low-alcohol cider. Innov. Food Sci. Emerg. Technol.2020, 59, 102258.  
  36. AL Daccache, M.; Salameh, D.; Chamy, L.E.L.; Koubaa, M.; Maroun, R.G.; Vorobiev, E.; Louka, N. Evaluation of the fermentative capacity of an indigenous Hanseniaspora strain isolated from Lebanese apples for cider production. FEMS Microbiol. Lett.2020, 367, fnaa093.  
  37. Alonso-Salces, R.M.; Guyot, S.; Herrero, C.; Berrueta, L.A.; Drilleau, J.F.; Gallo, B.; Vicente, F. Chemometric characterisation of Basque and French ciders according to their polyphenolic profiles.  Bioanal. Chem. 2004, 379, 464–475.  
  38. Mangas, J.J.; Rodríguez, R.; Suárez, B.; Picinelli, A.; Dapena, E. Study of the phenolic profile of cider apple cultivars at maturity by multivariate techniques.  Agric. Food Chem.1999, 47, 4046–4052.  
  39. Nogueira, A.; Guyot, S.; Marnet, N.; Lequéré, J.M.; Drilleau, J.F.; Wosiacki, G. Effect of alcoholic fermentation in the content of phenolic compounds in cider processing.  Arch. Biol. Technol.2008, 51, 1025–1032.  
  40. Symoneaux, R.; Baron, A.; Marnet, N.; Bauduin, R.; Chollet, S. Impact of apple procyanidins on sensory perception in model cider (part 1): Polymerisation degree and concentration. LWT Food Sci. Technol.2014, 57, 22–27.  
  41. Park, J. Characterizing and Improving the Oral Sensations and Preference of Polyphenol-Rich Aronia Berry Juice; Honors Scholar Theses.348; University of Connecticut: Storrs, CT, USA, 2014.
  42. Arroyo-López, F.N.; Orlić, S.; Querol, A.; Barrio, E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae,  kudriavzeviiand their interspecific hybrid. Int. J. Food Microbiol. 2009, 131, 120–127.  
  43. Boudreau, T.F.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice. Food Sci. Nutr.2018, 6, 119–123.  
  44. Rosend, J.; Kuldjarv, R.; Rosenvald, S.; Paalme, T. The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon2019, 5, e01953.   of organic acids evolution during apple cider fermentation using an improved HPLC analysis method.  Food Res. Technol. 2008, 227, 1183–1190
  45. Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiaein the production of fermented beverages. Beverages 2016, 2, 30.  
  46. Castilleja, D.E.M.; Aldrete Tapia, J.A.; Arvizu Medrano, S.M.; Hernández Iturriaga, M.; Muñoz, L.S.; Martinez Peniche, R.Á. Growth kinetics for the selection of yeast strains for fermented beverages. In Yeast—Industrial Applications Conversion; InTech: London, UK, 2017; pp. 67–87
  47. Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomycesyeasts in winemaking. Fems Yeast Res. 2010, 10, 123–133 .
  48. Barnett, J.A. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast2000, 16, 755–771
  49. Dubourdieu, D.; Tominaga, T.; Masneuf, I.; Peyrot des Gachons, C.; Murat, M.L. The role of yeast in grape flavour development during fermentation: The example of Sauvignon blanc.  J. Enol. Vitic. 2006, 57, 81–88
  50. Ugliano, M.; Bartowsky, E.J.; McCarthy, J.; Moio, L.; Henschke, P.A. Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomycesyeast strains.  Agric. Food Chem. 2006, 54, 6322–6331.  
  51. Pretorius, I. The Genetic Analysis and Tailoring of Wine Yeasts. In Functional Genetics of Industrial Yeasts; de Winde, J.H., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 99–142.
  52. Combina, M.; Elía, A.; Mercado, L.; Catania, C.; Ganga, A.; Martinez, C. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina.  J. Food Microbiol. 2005, 99, 237–243.  
  53. Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity.  Microbiol. 2016, 7, 1–20.  
  54. Comitini, F.; Gobbi, M.; Domizio, P.; Romanib, C.; Lencioni, L.; Mannazzud, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882.  
  55. Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolina, L. Candida zemplininacan reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.  Environ. Microbiol. 2012, 78, 1987–1994.
  56. Clemente-Jimenez, J.M.; Mingorance-Cazorla, L.; Martínez-Rodríguez, S.; Las Heras-Vázquez, F.J.; Rodríguez-Vico, F. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol.2004, 21, 149–155 .
  57. Moreira, N.; Mendes, F.; Guedes de Pinho, P.; Hogg, T.; Vasconcelos, I. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarumand Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must.  J. Food Microbiol. 2008, 124, 231–238.  
  58. Moreira, N.; Mendes, F.; Hogg, T.; Vasconcelos, I. Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts.  J. Food Microbiol.2005, 103, 285–294.  
  59. Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Studies on acetate ester production by non-Saccharomyceswine yeasts.  J. Food Microbiol. 2001, 70, 283–289.  
  60. Viana, F.; Gil, J.V.; Genovés, S.; Vallés, S.; Manzanares, P. Rational selection of non-Saccharomyceswine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 2008, 25, 778–785.  
  61. Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of yeasts for apple juice fermentation and production of cider volatile compounds. LWT2019, 99, 224–230.  
  62. Wei, J.; Zhang, Y.; Wang, Y.; Ju, H.; Niu, C. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomycesyeasts in pure and mixed fermentations.  J. Food Microbiol. 2020, 318, 108471.  
  63. Lemos Junior, W.J.F.; Binati, R.L.; Felis, G.E.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Volatile organic compounds from Starmerella bacillaristo control gray mold on apples and modulate cider aroma profile. Food Microbiol. 2020, 89, 103446.  
  64. Cûs, F.; Jenko, M. The influence of yeast strains on the composition and sensory quality of Gewürztraminer wine. Food Technol. Biotechnol. 2013, 51, 547–553.  
  65. López, M.C.; Mateo, J.J.; Maicas, S. Screening of β-Glucosidase and β-Xylosidase activities in four non-Saccharomycesyeast isolates.  Food Sci. 2015, 80, C1696–C1704.  
  66. Spagna, G.; Barbagallo, R.N.; Palmeri, R.; Restuccia, C.; Giudici, P. Properties of endogenous beta—Glucosidase of a Saccharomyces cerevisiae strain isolated from Sicilian musts and wines.  Microb. Technol. 2002, 31, 1030–1035.  
  67. de Arruda Moura Pietrowski, G.; dos Santos, C.M.E.; Sauer, E.; Wosiacki, G.; Nogueira, A. Influence of fermentation with Hanseniaspora yeast on the volatile profile of fermented apple. J. Agric. Food Chem.2012, 60, 9815–9821.  
  68. Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional yeast species for lowering ethanol content of wines.  Microbiol. 2016, 7, 642.  
  69. Röcker, J.; Strub, S.; Ebert, K.; Grossmann, M. Usage of different aerobic non-Saccharomycesyeasts and experimental conditions as a tool for reducing the potential ethanol content in wines.  Food Res. Technol. 2016, 242, 2051–2070.  
  70. Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomycesyeasts for the reduction of alcohol content in wine.  Environ. Microbiol. 2014, 80, 1670–1678.  
  71. Benito, Á.; Calderón, F.; Benito, S. Mixed alcoholic fermentation of Schizosaccharomyces pombeand Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine composition. Amb Express 2019, 9, 17.  
  72. Benito, S. The impacts of Lachancea thermotoleransyeast strains on winemaking.  Microbiol. Biotechnol. 2018, 102, 6775–6790.  

Literature

  1. Ferree, D.C.; Warrington, I.J. Apples Botany, Production and Uses //CABI Publishing: Oxfordshire, UK, 2015; Volume 1, ISBN 9788578110796.
  2. United States Department of Agriculture //Fresh Apples Fresh Domestic Consumption by Country in MT; U.S. Department of Agriculture: Washington, DC, USA, 2019.
  3. Centro Nacional De Alimentación. Tablas Peruanas de Composición de Alimentos; Centro Nacional De Alimentación: Madrid, Spain, 2009; ISBN 9789972857737.
  4. Hansen, P. The Effect of cropping on the growth and uptake of nutrients by apple trees at different levels of nitrogen, potassium, magnesium and phosphorus. Acta Agric. Scand.1973, 23, 87–92.
  5. Zhang, L.-X.; Zhang, L.-S.; Li, B.-Z.; HAN, M.-Y. Mineral nutrition elements and their roles in growth and development of apple trees in arid areas.  Northwest For. Univ.1997, 22, 111–115.
  6. Perring, M.A.; Holland, D.A. The effect of orchard factors on the chemical composition of apples. V. Year-to-year variations in the effects of NPK fertilizers and sward treatment on fruit composition.  Hortic. Sci.1985, 60, 37–46.  
  7. Fallahi, E.; Conway, W.S.; Hickey, K.D.; Sams, C.E. The role of calcium and nitrogen in postharvest quality and disease resistance of apples. HortScience1997, 32, 831–835.  , W. Food Chemistry Berlin Allemagne. Springer: Berlin, Germany, 2009; ISBN 9783540699330.  ]
  8. Renard, C.M.G.C.; Baron, A.; Guyot, S.; Drilleau, J.F. Interactions between apple cell walls and native apple polyphenols: Quantification and some consequences.  J. Biol. Macromol.2001, 29, 115–125.
  9. Valois, S.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization of fermented cider apple cultivars grown in upstate New York.  Am. Pomol. Soc.2006, 60, 113–128.  
  10. Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants2018, 7, 20.  
  11. Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC).  Agric. Food Chem.2003, 51, 6347–6353.   
  12. Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J.-F. Reversed-Phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a french cider apple variety (Malus domesticaKermerrien). J. Agric. Food Chem. 1998, 46, 1698–1705.  
  13. Jawad, M.; Schoop, R.; Suter, A.; Klein, P.; Eccles, R. Perfil de eficacia y seguridad de Echinacea purpurea en la prevención de episodios de resfriado común: Estudio clínico aleatorizado, doble ciego y controlado con placebo.  Fitoter.2013, 13, 125–135.  
  14. Podsedek, A.; Wilska-Jeszka, J.; Anders, B.; Markowski, J. Compositional characterisation of some apple varieties.  Food Res. Technol.2000, 210, 268–272.  
  15. Cabranes, C.; Moreno, J.; Mangas, J.J. Dynamics of yeast populations during cider fermentation in the Asturian Region of Spain.  Environ. Microbiol.1990, 56, 3881–3884.  
  16. Campo, G.; Santos, J.I.; Berregi, I.; Velasco, S.; Ibarburu, I.; Dueñas, M.T.; Irastorza, A.; Brew, J.I. Ciders produced by two types of presses and fermented in stainless steel and wooden vats.  Inst. Brew.2003, 109, 342–348.  
  17. Valles, B.S.; Pando Bedriñana, R.; Tascón, N.F.; Simón, A.Q.; Madrera, R.R. Yeast species associated with the spontaneous fermentation of cider. Food Microbiol.2007, 24, 25–31
  18. Ruiz-Cruz, S.; Alvarez-Parrilla, E.; de la Rosa, L.; Martinez-Gonzalez, A.I.; Ornelas-Paz, J.D.J.; Mendoza-Wilson, A.M.; Gonzalez-Aguilar, G.A.; Obregon, C. Effect of different sanitizers on microbial, sensory and nutritional quality of fresh-cut jalapeno peppers.  J. Agric. Biol. Sci.2010, 5, 331–341.  
  19. Graça, A.; Santo, D.; Esteves, E.; Nunes, C.; Abadias, M. Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiol.2015, 51, 179–185.  
  20. Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Viñas, I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments.  J. Food Microbiol.2008, 123, 121–129.  
  21. Beech, F. Cider making and cider research: A review.  Inst. Brew.1972, 78, 477–491.  
  22. Coton, E.; Coton, M.; Levert, D.; Casaregola, S.; Sohier, D. Yeast ecology in French cider and black olive natural fermentations.  J. Food Microbiol.2006, 108, 130–135.  
  23. Morrissey, W.F.; Davenport, B.; Querol, A.; Dobson, A.D.W. The role of indigenous yeasts in traditional Irish cider fermentations.  Appl. Microbiol.2004, 97, 647–655.  
  24. Romano, P.; Suzzi, G.; Comi, G.; Zironi, R.; Maifreni, M. Glycerol and other fermentation products of apiculate wine yeasts.  Appl. Microbiol.1997, 82, 615–618.  
  25. Terpou, A.; Dimopoulou, M.; Belka, A.; Kallithraka, S.; Nychas, G.E.; Papanikolaou, S. Effect of myclobutanil pesticide on the physiological behavior of two newly isolated Saccharomyces cerevisiaestrains during very-high-gravity alcoholic fermentation. Microorganisms 2019, 7, 666.  
  26. Lorenzini, M.; Zapparoli, G.; Azzolini, M.; Carvalho, C.; Sampaio, J.P. Sporobolomyces agrorum nov. and Sporobolomyces sucorumsp. nov., two novel basidiomycetous yeast species isolated from grape and apple must in Italy. Int. J. Syst. Evol. Microbiol. 2019, 69, 3385–3391.  
  27. Suárez Valles, B.; Pando Bedriñana, R.; González García, A.; Querol Simón, A. A molecular genetic study of natural strains of Saccharomycesisolated from Asturian cider fermentations.  Appl. Microbiol. 2007, 103, 778–786.  
  28. Al Daccache, M.; Koubaa, M.; Maroun, R.G.; Salameh, D.; Louka, N.; Vorobiev, E. Suitability of the Lebanese “Ace Spur” apple variety for cider production using Hanseniaspora yeast. Fermentation2020, 6, 32.  
  29. Laplace, J.M.; Jacquet, A.; Travers, I.; Simon, J.P.; Auffray, Y. Incidence of land and physicochemical composition of apples on the qualitative and quantitative development of microbial flora during cider fermentations.  Inst. Brew.2001, 107, 227–234.  
  30. Garai, G.; Duenas, M.T.; Irastorza, A.; Moreno-Arribas, M.V. Biogenic amine production by lactic acid bacteria isolated from cider.  Appl. Microbiol.2007, 45, 473–478.   
  31. Dellaglio, F.; Torriani, S.; Felis, G.E. Reclassification of Lactobacillus cellobiosusRogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck 1901.  J. Syst. Evol. Microbiol. 2004, 54, 809–812.
  32. Marieta, C.; Ibarburu, I.; Duenas, M.; Irastorza, A. Supramolecular structure and conformation of a (1—>3)(1—>2)-beta-D-glucan from Lactobacillus suebicusCUPV221 as observed by tapping mode atomic force microscopy.  Agric. Food Chem. 2009, 57, 6183–6188.  
  33. Salih, A.G.; Drilleau, J.F.; Cavin, F.F.; Sánchez, A.; Rodríguez, R.; Coton, M.; Coton, E.; Herrero, M.; García, L.A.; Díaz, M. Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Res. Int.2010, 43, 2101–2107.  
  34. Al Daccache, M.; Koubaa, M.; Salameh, D.; Maroun, R.G.; Louka, N.; Vorobiev, E. Ultrasound-assisted fermentation for cider production from Lebanese apples.  Sonochem.2020, 63, 104952.  
  35. Al Daccache, M.; Koubaa, M.; Salameh, D.; Vorobiev, E.; Maroun, R.G.; Louka, N. Control of the sugar/ethanol conversion rate during moderate pulsed electric field-assisted fermentation of a Hanseniaspora strain to produce low-alcohol cider. Innov. Food Sci. Emerg. Technol.2020, 59, 102258.  
  36. AL Daccache, M.; Salameh, D.; Chamy, L.E.L.; Koubaa, M.; Maroun, R.G.; Vorobiev, E.; Louka, N. Evaluation of the fermentative capacity of an indigenous Hanseniaspora strain isolated from Lebanese apples for cider production. FEMS Microbiol. Lett.2020, 367, fnaa093.  
  37. Alonso-Salces, R.M.; Guyot, S.; Herrero, C.; Berrueta, L.A.; Drilleau, J.F.; Gallo, B.; Vicente, F. Chemometric characterisation of Basque and French ciders according to their polyphenolic profiles.  Bioanal. Chem.2004, 379, 464–475.  
  38. Mangas, J.J.; Rodríguez, R.; Suárez, B.; Picinelli, A.; Dapena, E. Study of the phenolic profile of cider apple cultivars at maturity by multivariate techniques.  Agric. Food Chem.1999, 47, 4046–4052.  
  39. Nogueira, A.; Guyot, S.; Marnet, N.; Lequéré, J.M.; Drilleau, J.F.; Wosiacki, G. Effect of alcoholic fermentation in the content of phenolic compounds in cider processing.  Arch. Biol. Technol.2008, 51, 1025–1032.  
  40. Symoneaux, R.; Baron, A.; Marnet, N.; Bauduin, R.; Chollet, S. Impact of apple procyanidins on sensory perception in model cider (part 1): Polymerisation degree and concentration. LWT Food Sci. Technol.2014, 57, 22–27.  
  41. Park, J. Characterizing and Improving the Oral Sensations and Preference of Polyphenol-Rich Aronia Berry Juice; Honors Scholar Theses.348; University of Connecticut: Storrs, CT, USA, 2014.
  42. Arroyo-López, F.N.; Orlić, S.; Querol, A.; Barrio, E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae,  kudriavzeviiand their interspecific hybrid. Int. J. Food Microbiol. 2009, 131, 120–127.  
  43. Boudreau, T.F.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice. Food Sci. Nutr.2018, 6, 119–123.  
  44. Rosend, J.; Kuldjarv, R.; Rosenvald, S.; Paalme, T. The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon2019, 5, e01953.   of organic acids evolution during apple cider fermentation using an improved HPLC analysis method.  Food Res. Technol. 2008, 227, 1183–1190
  45. Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiaein the production of fermented beverages. Beverages 2016, 2, 30.  
  46. Castilleja, D.E.M.; Aldrete Tapia, J.A.; Arvizu Medrano, S.M.; Hernández Iturriaga, M.; Muñoz, L.S.; Martinez Peniche, R.Á. Growth kinetics for the selection of yeast strains for fermented beverages. In Yeast—Industrial Applications Conversion; InTech: London, UK, 2017; pp. 67–87
  47. Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomycesyeasts in winemaking. Fems Yeast Res. 2010, 10, 123–133 .
  48. Barnett, J.A. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast2000, 16, 755–771
  49. Dubourdieu, D.; Tominaga, T.; Masneuf, I.; Peyrot des Gachons, C.; Murat, M.L. The role of yeast in grape flavour development during fermentation: The example of Sauvignon blanc.  J. Enol. Vitic.2006, 57, 81–88
  50. Ugliano, M.; Bartowsky, E.J.; McCarthy, J.; Moio, L.; Henschke, P.A. Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomycesyeast strains.  Agric. Food Chem. 2006, 54, 6322–6331.  
  51. Pretorius, I. The Genetic Analysis and Tailoring of Wine Yeasts. In Functional Genetics of Industrial Yeasts; de Winde, J.H., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 99–142.
  52. Combina, M.; Elía, A.; Mercado, L.; Catania, C.; Ganga, A.; Martinez, C. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina.  J. Food Microbiol.2005, 99, 237–243.  
  53. Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomycesyeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity.  Microbiol. 2016, 7, 1–20.  
  54. Comitini, F.; Gobbi, M.; Domizio, P.; Romanib, C.; Lencioni, L.; Mannazzud, I.; Ciani, M. Selected non-Saccharomyceswine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882.  
  55. Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolina, L. Candida zemplininacan reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.  Environ. Microbiol. 2012, 78, 1987–1994.
  56. Clemente-Jimenez, J.M.; Mingorance-Cazorla, L.; Martínez-Rodríguez, S.; Las Heras-Vázquez, F.J.; Rodríguez-Vico, F. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol.2004, 21, 149–155 .
  57. Moreira, N.; Mendes, F.; Guedes de Pinho, P.; Hogg, T.; Vasconcelos, I. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarumand Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must.  J. Food Microbiol. 2008, 124, 231–238.  
  58. Moreira, N.; Mendes, F.; Hogg, T.; Vasconcelos, I. Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts.  J. Food Microbiol.2005, 103, 285–294.  
  59. Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Studies on acetate ester production by non-Saccharomyceswine yeasts.  J. Food Microbiol. 2001, 70, 283–289.  
  60. Viana, F.; Gil, J.V.; Genovés, S.; Vallés, S.; Manzanares, P. Rational selection of non-Saccharomyceswine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 2008, 25, 778–785.  
  61. Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of yeasts for apple juice fermentation and production of cider volatile compounds. LWT2019, 99, 224–230.  
  62. Wei, J.; Zhang, Y.; Wang, Y.; Ju, H.; Niu, C. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomycesyeasts in pure and mixed fermentations.  J. Food Microbiol. 2020, 318, 108471.  
  63. Lemos Junior, W.J.F.; Binati, R.L.; Felis, G.E.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Volatile organic compounds from Starmerella bacillaristo control gray mold on apples and modulate cider aroma profile. Food Microbiol. 2020, 89, 103446.  
  64. Cûs, F.; Jenko, M. The influence of yeast strains on the composition and sensory quality of Gewürztraminer wine. Food Technol. Biotechnol.2013, 51, 547–553.  
  65. López, M.C.; Mateo, J.J.; Maicas, S. Screening of β-Glucosidase and β-Xylosidase activities in four non-Saccharomycesyeast isolates.  Food Sci. 2015, 80, C1696–C1704.  
  66. Spagna, G.; Barbagallo, R.N.; Palmeri, R.; Restuccia, C.; Giudici, P. Properties of endogenous beta—Glucosidase of a Saccharomyces cerevisiaestrain isolated from Sicilian musts and wines.  Microb. Technol. 2002, 31, 1030–1035.  
  67. de Arruda Moura Pietrowski, G.; dos Santos, C.M.E.; Sauer, E.; Wosiacki, G.; Nogueira, A. Influence of fermentation with Hanseniaspora yeast on the volatile profile of fermented apple. J. Agric. Food Chem.2012, 60, 9815–9821.  
  68. Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional yeast species for lowering ethanol content of wines.  Microbiol.2016, 7, 642.  
  69. Röcker, J.; Strub, S.; Ebert, K.; Grossmann, M. Usage of different aerobic non-Saccharomycesyeasts and experimental conditions as a tool for reducing the potential ethanol content in wines.  Food Res. Technol. 2016, 242, 2051–2070.  
  70. Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomycesyeasts for the reduction of alcohol content in wine.  Environ. Microbiol. 2014, 80, 1670–1678.  
  71. Benito, Á.; Calderón, F.; Benito, S. Mixed alcoholic fermentation of Schizosaccharomyces pombeand Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine composition. Amb Express 2019, 9, 17.  
  72. Benito, S. The impacts of Lachancea thermotoleransyeast strains on winemaking.  Microbiol. Biotechnol. 2018, 102, 6775–6790.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *