Интеграл 1/2022

БИОПРИНТИНГ В МЕДИЦИНЕ. ОСОБЕННОСТИ И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ

BIOPRINTING IN MEDICINE. FEATURES AND PROSPECTS OF USE

Полянская Ангелина Андреевна, лечебный факультет, студент, Ставропольский государственный медицинский университет

Гиркина Диана Борисовна, Лечебный факультет, студент, Ставропольский государственный медицинский университет

Стерлева Екатерина Андреевна, Лечебный факультет, студент, Ставропольский государственный медицинский университет

Кузнецова Оксана Владимировна, асс.каф.тер.стом Ставропольский государственный медицинский университет

Сергеев Юрий Андреевич, заочный аспирант кафедры общей и детской стом. Ставропольский государственный медицинский университет

Polyanskaya Angelina Andreevna, Medical Faculty, student, Stavropol State Medical University

Girkina Diana Borisovna, Medical Faculty, student, Stavropol State Medical University

Startseva Ekaterina Andreevna, Medical Faculty, student, Stavropol State Medical University

Kuznetsova Oksana Vladimirovna, ass.kaf.ter.stom Stavropol State Medical University

Sergeyev Yuri Andreevich, correspondence graduate student of the Department of General and Pediatric stom. Stavropol State Medical University

 Аннотация: Изучение регенеративной медицины, как новой области, основанной на восстановлении и регенерации компонентов тканей позволяет решить ряд существующих проблем в здравоохранении. В основном это возможно за счёт активного применения тканевой инженерии, в частности, для воссоздания тканей и даже целых органов. Технология 3D печати является методом тканевой инженерии и обретает всё новые возможности в разных сферах и специальностях медицины в сравнении с другими методиками.

Эта обзорная статья в первую очередь посвящена технологии биопечати для биомедицинского применения. Биопечать может быть использована для изготовления широкого спектра тканей. Особое внимание уделено трудностям и потенциалу в разработке конструкции для регенерации тканей. А также применение 3D-биопечати в регенерации тканей.

Abstract: The study of regenerative medicine as a new field based on the restoration and regeneration of tissue components allows solving a number of existing problems in healthcare. This is mainly possible due to the active use of tissue engineering, in particular, for the reconstruction of tissues and even entire organs. 3D printing technology is a method of tissue engineering and is gaining new opportunities in various fields and specialties of medicine in comparison with other techniques.

This review article is primarily devoted to bioprinting technology for biomedical applications. Bioprinting can be used to make a wide range of fabrics. Particular attention is paid to the difficulties and potential in developing a design for tissue regeneration. As well as the use of 3D bioprinting in tissue regeneration.

Ключевые слова: регенеративная медицина, тканевая инженерия, 3D-биопечать, биочернила, биореакторы.

Keywords: regenerative medicine, tissue engineering, 3D bioprinting, bio-ink, bioreactors.

Список литературы

  1. Gupta S, Bit A. 3D bioprinting in tissue engineering and regenerative medicine. Cell Tissue Bank. 2021 May 22.
  2. Caddeo S., Boffito M., Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models.  Bioeng. Biotechnol. 2017;5:40.
  3. Han F., Wang J., Ding L., Hu Y., Li W., Yuan Z., Guo Q., Zhu C., Yu L., Wang H., et al. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia.  Bioeng. Biotechnol. 2020;8:83.
  4. Abdulghani S., Mitchell G.R. Biomaterials for In Situ Tissue Regeneration: A Review. 2019;9:750. doi: 10.3390/biom9110750. 
  5. Ali M., Anil Kumar P.R., Lee S.J., Jackson J.D. Three-dimensional bioprinting for organ bioengineering: Promise and pitfalls.  Opin. Organ Transplant. 2018;23:649–656. doi: 10.1097/MOT.0000000000000581. 
  6. Salgado A.J., Oliveira J.M., Martins A., Teixeira F.G., Silva N.A., Neves N.M., Sousa N., Reis R.L. Tissue engineering and regenerative medicine: Past, present, and future.  Rev. Neurobiol. 2013;108:1–33. doi: 10.1016/B978-0-12-410499-0.00001-0. 
  7. Matai I., Kaur G., Seyedsalehi A., McClinton A., Laurencin C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. 2020;226:119536.doi: 10.1016/j.biomaterials.2019.119536. 
  8. Cui X., Boland T., D’Lima D.D., Lotz M.K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 2012;6:149–155. doi: 10.2174/187221112800672949. 
  9. Howard D., Buttery L.D., Shakesheff K.M., Roberts S.J. Tissue engineering: Strategies, stem cells and scaffolds.  Anat. 2008;213:66–72. doi: 10.1111/j.1469-7580.2008.00878.x. 
  10. Knowlton S., Cho Y., Li X.J., Khademhosseini A., Tasoglu S. Utilizing stem cells for three-dimensional neural tissue engineering.  Sci. 2016;4:768–784. doi: 10.1039/C5BM00324E. 
  11. Ong C.S., Yesantharao P., Huang C.Y., Mattson G., Boktor J., Fukunishi T., Zhang H., Hibino N. 3D bioprinting using stem cells.  Res. 2018;83:223–231. doi: 10.1038/pr.2017.252. 
  12. Polak J.M., Mantalaris S. Stem cells bioprocessing: An important milestone to move regenerative medicine research into the clinical arena.  Res. 2008;63:461–466. doi: 10.1203/PDR.0b013e31816a8c1c. [PubMed]
  13. Mhanna R. Tissue Engineering for Artificial Organs.Wiley; Hoboken, NJ, USA: 2017. Introduction to Tissue Engineering; pp. 1–34. Chapter 1.
  14. O’Brien F.J. Biomaterials & scaffolds for tissue engineering.  Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. 
  15. Ravnic D.J., Leberfinger A.N., Koduru S.V., Hospodiuk M., Moncal K.K., Datta P., Dey M., Rizk E., Ozbolat I.T. Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives.  Surg. 2017;266:48–58. doi: 10.1097/SLA.0000000000002141.
  16. Starzl T.E. The early days of transplantation. 1994;272:1705. doi: 10.1001/jama.272.21.1705. 
  17. Giwa S., Lewis J.K., Alvarez L., Langer R., Roth A.E., Church G.M., Markmann J.F., Sachs D.H., Chandraker A., Wertheim J.A., et al. The promise of organ and tissue preservation to transform medicine.  Biotechnol. 2017;35:530–542. doi: 10.1038/nbt.3889. 
  18. Rosen R.D., Burns B. StatPearls Publishing; Treasure Island, FL, USA: 2020. Trauma Organ Procurement. 
  19. UNOS Transplant Trends. [(accessed on 15 October 2020)]. Available online: https://unos.org/data/transplant-trends/
  20. Gao G., Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine.  Lett. 2016;38:203–211. doi: 10.1007/s10529-015-1975-1. 
  21. Wang H., Li Y., Zuo Y., Li J., Ma S., Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. 2007;28:3338–3348. doi: 10.1016/j.biomaterials.2007.04.014. [PubMed] [CrossRef] [Google Scholar]
  22. Zhang Y., Wu D., Zhao X., Pakvasa M., Tucker A.B., Luo H., Qin K.H., Hu D.A., Wang E.J., Li A.J., et al. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine.  Bioeng. Biotechnol. 2020;8:598607. doi: 10.3389/fbioe.2020.598607. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  23. Griffith L.G., Naughton G. Tissue engineering—Current challenges and expanding opportunities. 2002;295:1009–1014. doi: 10.1126/science.1069210.
  24. Vijayavenkataraman S., Yan W.C., Lu W.F., Wang C.H., Fuh J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine.  Drug Deliv. Rev. 2018;132:296–332. doi: 10.1016/j.addr.2018.07.004.
  25. Mitsouras D., Liacouras P., Imanzadeh A., Giannopoulos A.A., Cai T., Kumamaru K.K., George E., Wake N., Caterson E.J., Pomahac B., et al. Medical 3D Printing for the Radiologist. 2015;35:1965–1988. doi: 10.1148/rg.2015140320
  26. Murphy S.V., De Coppi P., Atala A. Opportunities and challenges of translational 3D bioprinting.  Biomed. Eng. 2020;4:370–380. doi: 10.1038/s41551-019-0471-7.
  27. Kang H.W., Lee S.J., Ko I.K., Kengla C., Yoo J.J., Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.  Biotechnol. 2016;34:312–319. doi: 10.1038/nbt.3413.
  28. Xie Z., Gao M., Lobo A.O., Webster T.J. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. 2020;12:1717. doi: 10.3390/polym12081717.
  29. Hockaday L.A., Kang K.H., Colangelo N.W., Cheung P.Y., Duan B., Malone E., Wu J., Girardi L.N., Bonassar L.J., Lipson H., et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. 2012;4:035005. doi: 10.1088/1758-5082/4/3/035005.
  30. Vettori L., Sharma P., Rnjak-Kovacina J., Gentile C. 3D Bioprinting of Cardiovascular Tissues for In Vivo and In Vitro Applications Using Hybrid Hydrogels Containing Silk Fibroin: State of the Art and Challenges.  Tissue Microenviron. Rep. 2020;1:261–276. doi: 10.1007/s43152-020-00026-
  31. Cui X., Breitenkamp K., Finn M.G., Lotz M., D’Lima D.D. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. 2012;18:1304–1312. doi: 10.1089/ten.tea.2011.0543.
  32. Papaioannou T.G., Manolesou D., Dimakakos E., Tsoucalas G., Vavuranakis M., Tousoulis D. 3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication. Acta Cardiol. Sin. 2019;35:284–289. doi: 10.6515/ACS.201905_35(3).20181115A.
  33. Seol Y.-J., Kang H.-W., Lee S.J., Atala A., Yoo J.J. Bioprinting technology and its applications.  J. Cardio-Thorac. Surg. 2014;46:342–348. doi: 10.1093/ejcts/ezu148.
  34. Tan B., Gan S., Wang X., Liu W., Li X. Applications of 3D bioprinting in tissue engineering: Advantages, deficiencies, improvements, and future perspectives.  Mater. Chem. B. 2021;9:5385–5413. doi: 10.1039/D1TB00172H.
  35. Agarwal S., Saha S., Balla V.K., Pal A., Barui A., Bodhak S. Current Developments in 3D Bioprinting for Tissue and Organ Regeneration—A Review.  Mech. Eng. 2020;6:90. doi: 10.3389/fmech.2020.589171. 
  36. Lee K., Silva E.A., Mooney D.J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments.  R. Soc. Interface. 2011;8:153–170. doi: 10.1098/rsif.2010.0223.
  37. Irvine S.A., Venkatraman S.S. Bioprinting and Differentiation of Stem Cells. 2016;21:1188. doi: 10.3390/molecules21091188.
  38. Vermeulen N., Haddow G., Seymour T., Faulkner-Jones A., Shu W. 3D bioprint me: A socioethical view of bioprinting human organs and tissues.  Med. Ethics. 2017;43:618–624. doi: 10.1136/medethics-2015-103347.
  39. Xing F., Xiang Z., Rommens P.M., Ritz U. 3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication. 2020;13:2278. doi: 10.3390/ma13102278.
  40. Chepelev L., Wake N., Ryan J., Althobaity W., Gupta A., Arribas E., Santiago L., Ballard D.H., Wang K.C., Weadock W., et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print. Med. 2018;4:11. doi: 10.1186/s41205-018-0030-y. 
  41. Filippou V., Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound.  Phys. 2018;45:e740–e760. doi: 10.1002/mp.13058. 
  42. Datta P., Barui A., Wu Y., Ozbolat V., Moncal K.K., Ozbolat I.T. Essential steps in bioprinting: From pre- to post-bioprinting.  Adv. 2018;36:1481–1504.
  43. Kim J., Piao Y., Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy.  Soc. Rev. 2009;38:372–390. doi: 10.1039/B709883A.
  44. Khoda A.K.M., Ozbolat I.T., Koc B. Designing heterogeneous porous tissue scaffolds for additive manufacturing processes. -Aided Des. 2013;45:1507–1523.
  45. Wang X., Zhao L., Fuh J.Y.H., Lee H.P. Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling Based on X-ray Computed Tomography Analysis. 2019;11:1154. doi: 10.3390/polym11071154.
  46. Allevi Bioprinting 101: Learn How To 3D Bioprint. [(accessed on 2 November 2020)]. Available online: https://www.allevi3d.com/bioprinting-101/
  47. Merceron T.K., Burt M., Seol Y.J., Kang H.W., Lee S.J., Yoo J.J., Atala A. A 3D bioprinted complex structure for engineering the muscle-tendon unit. 2015;7:035003. doi: 10.1088/1758-5090/7/3/035003.
  48. Augustine R. Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks.  Biomater. 2018;7:77–92. doi: 10.1007/s40204-018-0087-0.
  49. Li J., Chen M., Fan X., Zhou H. Recent advances in bioprinting techniques: Approaches, applications and future prospects.  Transl. Med. 2016;14:271. doi: 10.1186/s12967-016-1028-0.
  50. Zhang Y.S., Oklu R., Dokmeci M.R., Khademhosseini A. Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harb. Perspect. Med. 2018;8:a025718. doi: 10.1101/cshperspect.a025718
  51. Jana S., Lerman A. Bioprinting a cardiac valve.  Adv. 2015;33:1503–1521. doi: 10.1016/j.biotechadv.2015.07.006. 
  52. Jones N. Science in three dimensions: The print revolution. 2012;487:22–23. doi: 10.1038/487022a.
  53. Duan B., Hockaday L.A., Kang K.H., Butcher J.T. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels.  Biomed. Mater. Res. Part A. 2013;101:1255–1264. doi: 10.1002/jbm.a.34420.
  54. Kang L.H., Armstrong P.A., Lee L.J., Duan B., Kang K.H., Butcher J.T. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels.  Biomed. Eng. 2017;45:360–377. doi: 10.1007/s10439-016-1619-1.
  55. Ozbolat I.T., Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. 2016;76:321–343. doi: 10.1016/j.biomaterials.2015.10.076
  56. Ashammakhi N., Ahadian S., Xu C., Montazerian H., Ko H., Nasiri R., Barros N., Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs.  Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008.
  57. Do A.V., Khorsand B., Geary S.M., Salem A.K. 3D Printing of Scaffolds for Tissue Regeneration Applications.  Healthc. Mater. 2015;4:1742–1762. doi: 10.1002/adhm.201500168.
  58. Caporali A., Martello A., Miscianinov V., Maselli D., Vono R., Spinetti G. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Ther.2017;171:56–64.
  59. Bhise N.S., Manoharan V., Massa S., Tamayol A., Ghaderi M., Miscuglio M., Lang Q., Shrike Zhang Y., Shin S.R., Calzone G., et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. 2016;8:014101.
  60. Zhang S., Wang H. Current Progress in 3D Bioprinting of Tissue Analogs. SLAS Technol. 2019;24:70–78.
  61. Rosser J., Thomas-Vazquez D. 3D Bioprinting for Reconstructive Surgery.Woodhead Publishing; Sawston, UK: 2018. Bioreactor Processes for Maturation of 3D Bioprinted Tissue.
  62. Ahmed S., Chauhan V.M., Ghaemmaghami A.M., Aylott J.W. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering.  Lett. 2019;41:1–25. doi: 10.1007/s10529-018-2611-7.
  63. Gaspar D.A., Gomide V., Monteiro F.J. The role of perfusion bioreactors in bone tissue engineering. 2012;2:167–175. doi: 10.4161/biom.22170. 
  64. Salehi-Nik N., Amoabediny G., Pouran B., Tabesh H., Shokrgozar M.A., Haghighipour N., Khatibi N., Anisi F., Mottaghy K., Zandieh-Doulabi B. Engineering parameters in bioreactor’s design: A critical aspect in tissue engineering.  Res. Int. 2013;2013:762132. doi: 10.1155/2013/762132. 
  65. Smith L.J., Li P., Holland M.R., Ekser B. FABRICA: A Bioreactor Platform for Printing, Perfusing, Observing, & Stimulating 3D Tissues.  Rep. 2018;8:7561. doi: 10.1038/s41598-018-25663-7.
  66. Noor N., Shapira A., Edri R., Gal I., Wertheim L., Dvir T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts.  Sci. 2019;6:1900344. doi: 10.1002/advs.201900344.
  67. 3D Printing Industry. [(accessed on 16 November 2020)]. Available online: https://3dprintingindustry.com/news/fraunhofer-3d-bioprinted-blood-vessels-pumps-new-life-bioprinted-organ-research-57283/
  68. Northwestern University 3-D Printed Ovaries Produce Healthy Offspring. [(accessed on 16 November 2020)]. Available online: https://news.northwestern.edu/stories/2017/may/3-d-printed-ovaries-offspring/
  69. Wake Forest School of Medicine Replacement Organs and Tissue. [(accessed on 16 November 2020)]. Available online: https://school.wakehealth.edu/Research/Institutes-and-Centers/Wake-Forest-Institute-for-Regenerative-Medicine/Research/Replacement-Organs-and-Tissue.
  70. The European Space Agency Upside-Down 3D-Printed Skin and Bone, for Humans to Mars. [(accessed on 16 November 2020)]. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Upside-down_3D-printed_skin_and_bone_for_humans_to_Mars.
  71. Pandorum BIO-ENGINEERED Human Cornea. [(accessed on 16 November 2020)]. Available online: http://www.pandorumtechnologies.com/cornea.php.
  72. Hasan A., Paul A., Memic A., Khademhosseini A. A multilayered microfluidic blood vessel-like structure.  Microdevices. 2015;17:88. doi: 10.1007/s10544-015-9993-2.
  73. Bertassoni L.E., Cecconi M., Manoharan V., Nikkhah M., Hjortnaes J., Cristino A.L., Barabaschi G., Demarchi D., Dokmeci M.R., Yang Y., et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14:2202–2211. doi: 10.1039/C4LC00030G.
  74. Gaebel R., Ma N., Liu J., Guan J., Koch L., Klopsch C., Gruene M., Toelk A., Wang W., Mark P., et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. 2011;32:9218–9230. doi: 10.1016/j.biomaterials.2011.08.071. 
  75. Binder K.W., Zhao W., Aboushwareb T., Dice D., Atala A., Yoo J.J. In situ bioprinting of the skin for burns.  Am. Coll. Surg. 2010;211:S76. doi: 10.1016/j.jamcollsurg.2010.06.198.
  76. He P., Zhao J., Zhang J., Li B., Gou Z., Gou M., Li X. Bioprinting of skin constructs for wound healing.  Trauma. 2018;6:5. doi: 10.1186/s41038-017-0104-x. 
  77. Koch L., Deiwick A., Schlie S., Michael S., Gruene M., Coger V., Zychlinski D., Schambach A., Reimers K., Vogt P.M., et al. Skin tissue generation by laser cell printing.  Bioeng. 2012;109:1855–1863. doi: 10.1002/bit.24455. 
  78. Varkey M., Visscher D.O., van Zuijlen P.P.M., Atala A., Yoo J.J. Skin bioprinting: The future of burn wound reconstruction?  Trauma. 2019;7:4. doi: 10.1186/s41038-019-0142-7.
  79. Cubo N., Garcia M., Del Canizo J.F., Velasco D., Jorcano J.L. 3D bioprinting of functional human skin: Production and in vivo analysis. 2016;9:015006. doi: 10.1088/1758-5090/9/1/015006. 
  80. Lee V., Singh G., Trasatti J.P., Bjornsson C., Xu X., Tran T.N., Yoo S.S., Dai G., Karande P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods. 2014;20:473–484. doi: 10.1089/ten.tec.2013.0335. 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *